FREE CONVECTION IN STRONG GRAVITY FIELDS

B. M. Berkovskii and A. A. Baranov UDC 536.25

Convection is considered in a narrow vertical slit with lateral temperature gradient in post-
Newtonian approximation as a model problem. It is shown that the convection rate increases
with gravity potential.

1. The Role of Convection in Relativistic Astrophysics. At present the investigation of motion and of
the behavior of matter in strong gravity fields in the case of considerable temperature gradient with large
internal energy taken into account is of great interest. Here only one aspect will be considered, namely
we shall try to explain the role of free convection of a viscous heat-conductive fluid in strong gravity fields.

The role of gravity convection in astronomy has already been acknowledged for some time. Indeed,
convection explains a number of astrophysical phenomena and processes; however, convective motions in
objects with a high gravity potential have not as yet been investigated although their important role was
pointed out by Zel'dovich and Novikov in [1]. The effect of gravity convection in strong fields is of particu-
lar interest in connection with the latest concepts and discoveries in the field of relativistic astrophysics,
namely: neutron stars, quasars, superstars, residual radiation, pulsars [1,2]. The extremal conditions
mentioned previously are valid for these cosmic objects.

It follows from the Newtonian convection theory [1] thatits effects are proportional to the mass of the
object in whose field the convection motion is investigated. Of course, for a larger mass the convection
assumes a much greater role. The role of convection also increases with the increase in temperature
gradients which takes place is cosmic objects.

For objects comparable with gravity radius of the superstar of a neutron star variety convection may
lead to a considerable increase in the velocity of motion; it can even exceed the parabolic velocity and re-
sult in the ejection of masses from the object. It is therefore probable that convection which causes the
escape of matter may be instrumental in protecting the evolution of massive and dense objects from catas-
trophic collapse.

Convection in cosmic objects can lead to nonradial oscillations of considerable mass of matter which,
in turn, can result in gravity radiation; the latter is of considerable interestat present in view of the latest
experiments carried out by Weber [4]. Since no objects have so far been found which would cause powerful
gravity radiation it is important to find out what role the contribution of the convective mechanism plays
in explaining gravity radiation of cosmic objects.

Accelerated plasma ejected from the main body of a cosmic object may also generate a strong electro-
magnetic radiation. Here the vulcanic hypothesis of Dyson [5] is of considerable interest in accordance
with which pulsar radiation takes place when plasma matter is ejected from the main layer of the neutron
star because of strong convection the latter being sufficiently strong so that it pierces the outer solid crys-
tallic layer of the neutron star.

All this points to the fact that gravity convection may have an important part to play in the evolution
of cosmic objects and that a number of cosmic phenomena and effects in strong fields may be explained by
convection. Therefore the effect of gravity convection is foday a very important and topical study.

In the present article the general problem of motion of viscous heat-conductive fluid is first formu-
lated within the general theory of relativity (GTR). However, since the study of such a motion would be
very difficult we furn our attention tohydrodynamics in post-Newtonian approximationi.e., withanaccuracy
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up to the terms (v%/c?) and (U/c?), where v is velocity; U is gravity potential and c is light velocity. How-
ever, even in this case it is extremely difficult to obtain an analytic solution. Therefore, our model prob-
lem will be stationary post-Newtonian convection in a vertical slit with a lateral temperature gradient.
Special characteristic features will be studied on this example of convection in strong gravity fields thus
confirming its important role in astrophysical objects.

2. Viscous Heat-Conductive Fluid in GTR. It is known [3, 4] that the motion of a viscous heat-con-
ductive fluid in the special theory of relativity (STR) is described by the relativistic hydrodynamics equa-
tions

Tl:k, R = O, (J-)

where the comma indicates partial differentiation. The Roman subscripts and superscripts assume the
values 0, 1, 2, 3, the Greek subscripts the values 1, 2, 3, and Tik is the energy— momentum tensor of the
viscous fluid. The expression for this tensor is given by [3]

Ték = T 4 vt = (e + p)ulut — pg™® + 1% @)

where Tok is theenergy— momentum tensor of an ideal fluid; e is the energy density; p is pressure; gik
are metric tensor components (of signature 2); ul are the 4-ve locity components; 71K is tensor of viscous
tensions [3],
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where n and Zare the first and second viscosity coefficients respectively.
The equation of conservation of the number of particles [3]
(nut + v, ;=0 @)

should be added to Eq. (1). In the above n is the density of the number of particles, and the vector Vi, due
to heat conductivity, is written as
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where x is the heat-conduction coefficient; T is temperature; w is the heat function; p is chemical poten-
tial. A derivation of the expressions (3) and (5) from the microscopic point of view can be found in [7].

Yet another equation, namely the state equation
p=pWV, T, S), (6)

should be added to Eqs. (1) and (4). Then the system (1), (4), and(6) describes the motion of a viscous heat-
conductive fluid in STR.

In the process of describing the fluid motion in GTR ordinary derivatives should be replaced by
covariant ones in (1), 3), and@); then the equations of motion in GTR are

Tik,, =0, )
(nu + v =0, ®)

where a semicolon indicates a covariant derivative. Einstein's gravitational equations must also be added:

R~ —_ g*R = — uT. ©)
The system of equations (7)-(9) and (6) describes the motion of a viscous heat-conductive fluid in
GTR. In the general case it is extremely difficult to find a solution.

We shall confine our consideration to a particular but important and interesting model problem which
is familar in Newtoniantheory, thisbeing the fluid motion in a narrow vertical channel in the case of lateral
temperature gradient. Post-Newtonian hydrodynamics willbe employed, that is, terms will be retained of
the series in the powers of 1/c?,
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3. Post-Newtoniah Stationary Convection in Vertical Channel with Lateral Temperature Gradient.
To solve the above problem the post-Newtonian hydrodynamics developed by Chandrasekhar [8] is employed.
In such dydrodynamics terms of the series up to U/c? and v¥/c? inclusive are retained.

Some usual simplifying assumptions are now made. The case of stationary convection will be analyzed,
i.e., allterms containing the derivatives with respect to time will be omitted. In the viscosity tensor (3)
the second viscosity ¢ is also omitted. Furthermore, squares of velocities are also omitted (which line-
arize the problem). Finally, one sets

uli =0, (o)
which is a relativistic analog in the usual sense of the fluid being incompressible; then the equations of
post-Newtonian hydrodynamics (7) become
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The quantity\To‘?‘ll(( was evaluated in [6]. Under our assumptions the components of the metric tensor canbe
written as [6]
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and the velocity components as
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The Christoffel symbols and the quantities y, are as follows:
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In the relations (12)-(14) the gravity potential U is related to the density p by the Poisson equation:
AU = — 4aGp. (15)
The potential Uy can be determined from the equation
AU, = — 4aGpv,, (16)
and the potential & from the equation
AP = — 4nGpy, L
where
3
p=U+>. 2, (18)
2

In view of the above the tensor of the viscous tensions can be written in the form
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TE = — 0 (4 + gV - uiue U+ ey i), (19)
where the covariant derivative V; is

Vet = g% + Tomts™. 20)

In Eq. (11) only the terms up to 1/c? should be retained. It can easily be verifield from (19) by direct com~
putation that

=07, % =0, @1)
and since
TS =0(?), TH=0(", 22)

therefore the terms I'*7% and I"B%'roﬁ can be omitted since they are of a higher order of smallness than
1/¢2, Having carried out some computations the following expression can be obtained:
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‘or, using (14) and (10) which in post-Newtonian approximation becomes
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According to Chandrasekhar [8] one has under our assumptions
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Finally, the stationary linearized hydrodynamic equations of viscous fluid in post-Newtonian approximation

become
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Standard convection equations can be obtained from Eq. (27). To this end it is assumed that
P=0+p0, P=p+p, T=T+T, n=n+n, (28)

where the subscript zero refers to the equilibrium values of the parameters, and the subscript 1 refersto
their perturbed values.

In the derivation of convection equations the equilibrium equation is, as usual, used though by now in
its post-Newtonian approximation. By virtue of (27) it becomes
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Similarly as in the Newtonian case for the perturbed density value it is assumed that
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0y = —PBpy Ty,

where B is the thermal expansion coefficient. Then the hydrodynamics equations governing convection be-
come
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If the terms of the order of 1/c% are omitted the classic equation [9] is at once obtained from Eq. (31)
which describes the convective motion in a narrow vertical channel in the case of lateral heating:
2.
1 g U n O,
P Ox% 0x* P, OxB P
The equation of conservation of particles, or otherwise the energy conservation equation is now con-
sidered.

={. (32)

Equation (8) can be rewritten as
‘ z . .
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An equation for perturbed particles is now constructed from (33) bearing in mind that in the equilibrium
state the relation
Ov‘{o)
0x%

-—}- Ffa ’V?o) = 0 (34)

is valid. It is not difficult to see that one can omit terms depending on the 4-velocity in the expression for
v since they are of a higher order of magnitude.

The fact that our heating is only lateral, i.e.,
T, = T, (x%, (35)

is now taken into account and also that the problem is two-dimensional, namely that all quantities are in-
dependent of x'; it is assumed that the gravitation force is in the opposite direction to the x% axis. Then
the energy equation for the perturbed quantities is

ov? d (i) N d (a1

G- e T g + Ten 4 T = 0. (36)

By using (14) it is not difficult to show that
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Since it was assumed that the slit is narrow the gradient of the potential (37) can be omitted.
Here by the perturbed quantity V(zi) one understands the expression
n aT.
iy = o (39)

In the derivation of (39) the thermodynamic identity
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was employed. In view of what was said above the energy conservation equation (36) becomes
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or, by using (13),(38), and 39) it becomes
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By using (24) which is valid the equation of energy conservation can finally be written as follows:

Ty _ oy, (43)
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By direct substitution of the classical equation governing the convection in a narrow vertical slit with lateral
heating,

v, =0, v3=u05(x, 44)

into (13) and (24) one finds that the solution (44) does not satisfy Egs. (31) and (24). This indicates that in
post-Newtonian approximation the profile of convection velocities will no longer be greater than cubic
parabola.

The specific feature of GTR in the systems (24) and (31) lies also in that in addition to a more com-
plicated dependence on the potential gradient there occurs a dependence on the potential itself (potential dif-
ference). '

It is extremely difficult to solve systems (24),(31), and (43) in the general case which should obvi-
ously be done numerically. However, an exact analytic solution for these systems can be obtained in the
particular and important case.

Let us consider convection in an object, for example, in a neutron star. The standard parameters
of such a star are: radius R =10 km, mass, approximately solar ~2-10% g. If convection is now con-
sidered in a slit of length r =0.1 at the distance R to the center, then one can assume that the quantity
U/c? =0.15 is approximately constant and that the quantity (1/02) «(8U/BR) can be everywhere omitted inthe
Egs. (31) and (24). In this case Egs. (24) and (31) assume a quasiclassical form:
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It is obvious that a solution of the systems (45) and (46) can be sought, similarly as in the classical case,
in the form (44). Then it follows directly from Eq. (46) that convection is uprated by a quantity proportion~
al to U/c?,

The obtained result confirms the hypothesis of Dyson [5] of the important part played by convection
in neutron stars in which pulsar radiation may be explained by such a mechanism. The obtained results
can also be applied to superstars of Hoyle and Fowler[10], where the quantity U/c? is approximatelyequal
to 0.2-0.3.

NOTATION
Vo is the 3-velocity component;
U is the gravity potential;
c is the velocity of light;
u! is the 4-velocity component;
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are the first and second viscosity coefficients respectively;
is the heat conductivity coefficient;
is the temperature;

is the heat function;

is the chemical potential;

is the density;

is the pressure;

is the energy density;

are the energy— momentum tensor;
are the Christoffel symbol;

is the heat expansion coefficient.
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